An Improved Decimation Technique for Erasure
Decoding of Quantum LDPC Codes

Gayathri R.*, Shobhit Bhatnagar*, Abhinav Vaishya and P Vijay Kumar
Department of ECE, Indian Institute of Science, Bengaluru
{ gayatr,shobhitb97,vaishyaabhinav,pvk1729} @ gmail.com

Abstract—Quantum low density parity-check (QLDPC) codes
represent an attractive candidate for achieving fault-tolerant
quantum computation. Erasure decoding of QLDPC codes has
gained traction recently as many physical systems such as
neutral-atom systems, photonic systems, trapped-ion systems
etc. suffer from qubit erasures. Techniques for erasure decoding
of QLDPC codes via belief propagation (BP) have been pro-
posed in the literature, such as BP with guided decimation (BP-
GD), where decimation refers to sequentially fixing hard values
for the variable nodes. We provide an alternative decimation-
based BP algorithm, which we term the BP with degree-
based decimation (BP-DD) algorithm, that intelligently chooses
a check node based on its degree and subsequently decimates
a variable node in its neighborhood. We apply the BP-DD
algorithm to two families of QLDPC codes, namely hypergraph
product codes and lifted product codes, and show improved
logical error performance over the BP-GD algorithm, without
incurring additional complexity. Our simulations show that
the BP-DD algorithm provides a versatile solution for erasure
decoding of QLDPC codes, in contrast to some techniques in the
literature that are applicable to only specific classes of QLDPC
codes.

I. INTRODUCTION

Quantum information processing promises an exponential
computational advantage over classical information process-
ing. However, quantum information is more sensitive to noise
as compared to classical information, and quantum error
correction is indispensable to realize a practical, fault-tolerant
quantum information processing system. A promising family
of quantum error-correcting codes to achieve fault tolerance
is the family of quantum low density parity-check (QLDPC)
codes, which are the quantum anlogues of classical LDPC
codes. Efforts to construct quantum LDPC codes having both
high rate and large minimum distance led to many non-trivial
code constructions [1]-[8]. One such construction is the
hypergraph product (HGP) construction by Tillich and Zémor
[9] which derives a QLDPC code out of two classical LDPC
codes. The HGP construction was subsequently generalized
by Pantaleev and Kalachev in [10] to obtain the family of
Lifted Product (LP) codes (which are also sometimes referred
to as generalized hypergraph product codes). Since qubit
erasures occur in many physical systems such as neutral-
atom systems [11], photonic systems [12], [13], trapped-
ion systems [14], superconducting qubits [15] etc., erasure

* indicates equal contribution.

decoding of QLDPC codes has gained a lot of interest
among researchers recently. However, some of the techniques
proposed in the literature are applicable to only specific fam-
ilies of QLDPC codes. For example, the vertical-horizontal
decoding algorithm proposed by Connolly et al. [16] is
applicable to only HGP codes. The focus of [17] is also
on optimization of HGP codes via reinforcement learning
and simulated annealing for quantum erasure channels. On
the other hand, techniques such as pruned peeling, again
proposed by Connolly et al. in [16], and belief propagation
with guided decimation (BP-GD) proposed by Gokduman
et al., initially for qubit errors [18] and subsequently for
qubit erasures [19], are applicable to general QLDPC codes.
Here, decimation means sequentially fixing variable nodes
to hard values to assist BP converge. A further set of
techniques that is applicable to general QLDPC codes has
been proposed by Kuo et al. in [20]. These techniques
are based on a combination of gradient descent and BP,
and have better worst-case complexity than BP-GD, but
the optimized complexity of BP-GD is smaller than the
optimized complexity of these schemes. Erasure decoding for
a class of quantum error-correcting codes called color codes
has been dealt with in [21]—-[23]. A linear time, maximum-
likelihood erasure decoder for surface codes was presented
by Delfosse et al. in [24], which was later extended to a
union-find decoder for topological codes in [25] and general
QLDPC codes in [26] with some additional complexity.

Our Contributions: We present an improved decimation
technique to assist BP decoding of QLDPC codes over the
quantum erasure channel, which we refer to as the belief
propagation with degree-based decimation (BP-DD) algo-
rithm. Whenever BP fails to converge, the BP-DD algorithm
intelligently chooses a check node based on the number of
erased variable nodes in its neighborhood and subsequently
decimates one of these variable nodes. We demonstrate
through simulations the improved logical error performance
of the BP-DD algorithm over the BP-GD algorithm for both
HGP codes and LP codes, without incurring any additional
complexity.

Organization of the paper: In Section II we provide
background on the stabilizer formalism for quantum error
correction and briefly describe the HGP and LP constructions
of QLDPC codes. We also describe syndrome-based BP

decoding of QLDPC codes over the quantum erasure channel
in this section. In Section III, we describe our BP-DD
algorithm and provide its pseudo-code. Simulation results
are presented in Section IV. Section V draws conclusions
and identifies directions for future work.

II. PRELIMINARIES

Notation: We use I, to denote the (n X n) identity matrix.
We use FF5 to denote the finite field of two elements. For a
vector £ € FZ, we use F; to deote the i-th coordinate of
E, and supp(F) to denote the support of E, i.e., supp(E) =
{i | B; #0, i € {1,2,...,n}}. The tensor product of two
matrices A and B is denoted by A ® B.

A. Stabilizer Formalism

A qubit, the fundamental unit of quantum information,
is associated with a 2-dimensional vector in the complex
Hilbert space C2. The Pauli group on n qubits is defined as

Ppn={wPi,@P,® ---®PF,},
where w = {£1,+i} and P; € {2, X,Y, Z}, where

10 0 1 0 —i 10
L= {0 1]’ X = L 0]’ Y= L 0}’ Z= [o —1]
are the Pauli matrices. An [[n, k]] stabilizer code [27] is a
2%_dimensional subspace of the Hilbert space (C?)®" that
encodes k logical qubits into n physical qubits. It is defined
as the simultaneous +1-eigenspace of an abelian sub-group
S of P,, that does not contain —I5». For a stabilizer code,
the stabilizer generators are a set of operators that generate
S. For a quantum stabilizer code defined via the stabilizer
group S, the minimum distance d is defined as the minimum
weight of a Pauli operator in N(S) \ S, where N(S) is the
normalizer of S in P, and the weight of a Pauli operator

P:wP1®P2®®Pn

is the number of indices j € {1,2,...,n} such that P; # I5.
This stabilizer code is then denoted as an [[n, k, d]] stabilizer
code.

Calderbank-Shor-Steane (CSS) codes are a popular sub-
class of stabilizer codes where each stabilizer is a tensor
product of either only I5-type and X-type Pauli matrices or
only I>-type and Z-type Pauli matrices [28], [29]. Consider
two classical binary codes Cx and Cz with corresponding
parity check matrices Hx and Hyz, respectively, such that
C% C Cx. It follows that Hx HZ = 0. A set (not necessarily
minimal) of stabilizer generators is given by Sx USz, where

SX :{Xal ®Xa2®._.®XU«n | [a17a27"'7a’ﬂ] EC}(}’
and
S;={Z"®2"% @ - @ 2% | [b1,bs,...,bn] €C5}.

It is easy to see that any two stabilizers in Sx commute
with each other, as is the case for any two stabilizers in Sy.

Further, since Hx H g = 0, it follows that every stabilizer in
Sx commutes with every stabilizer in Sy.

When X-type and Z-type errors occur independently, in
the CSS framework, they are handled separately. Hx is
used to correct Z-type errors and Hyz is used to correct
X-type errors. The error correction happens via syndrome
computation. The syndrome for X-type errors is given by
sx = HzEY and that for Z-type errors is given by
sy = H XE;, where Ex and E; are the corresponding
error vectors for X-type and Z-type errors, respectively.

B. Quantum LDPC Codes

QLDPC codes are quantum analogues of classical LDPC
codes and correspond to the case when the Hx and Hy
matrices mentioned before are sparse in nature. We will now
briefly describe two popular classes of QLDPC codes known
as hypergraph product [9] codes and lifted product codes [10]
as we have considered these codes for our simulations.

For HGP codes, Hx and H; are given by

HX = (Hl ®I772 Iml ®H2T)a
HZ = (I’ﬂl ®H2 HlTv ®Im2)a

where H; € F3''*" and Hy € F3'2*"™2 are parity check
matrices of two classical binary LDPC codes.

LP codes are generalizations of HGP codes, where each
scalar entry in the matrices H x and Hz above is replaced by
a circulant matrix. This is called lifting. Thus, the matrices
Hx and Hy for an LP code are given by

HX = (ﬁl by Inz Iml ® Ij]QT)a
HZ = (Inl ®I_~I2 I:[1T ®Im2)a

where H; and H, are (m1 x n1) and (m2 X n2) matrices,
respectively, whose entries are (L x L) binary circulant
matrices.

C. Quantum Erasure Channel

In the quantum erasure channel model, each qubit can
be lost or erased independently with a certain probability.
The loss of a qubit can be detected, and an erased qubit is
replaced with a maximally mixed state %, implying that each
erased qubit can be interpreted as being acted upon by the
Pauli matrices I, X, Y, and Z with equal probability. Thus
erasure correction is converted into correction of errors with
known locations. We will use the vector £ € F% to represent
the erasure locations. More precisely, qubit i € {1,2,...,n}
is erased iff ¢ € supp(E).

D. Syndrome Decoding over the Quantum Erasure Channel

BP is a well-known, low-complexity iterative algorithm for
decoding classical LDPC codes [30]-[32]. It is a message-
passing algorithm that passes messages along the edges of a
graph known as the Tanner graph associated with an LDPC
code. Let H € Fy'*™ be a parity check matrix associated
to a binary [n,k > (n — m)] LDPC code C. Then the
corresponding Tanner graph 7 (H) = (V,C, &) is a bipartite

Fig. 1: Tanner graph corresponding to the parity-check matrix H in (1).
Circles represent variable nodes and squares represent check nodes.

graph, where V' = {1,2,... n} is the set of variable nodes
corresponding to the n code symbols, and C' = {1,2,...,m}
is the set of check nodes that correspond to the rows of H.
There is an edge connecting check node 7 and variable node
j iff H; ; = 1, where H, ; denotes the (i,j)-th entry of H.
The neighborhood N (v) of a variable node v € V is the set
of all check nodes which are connected to it. Analogously,
the neighborhood N(c) of a check node ¢ € C is the set
of all variable nodes which are connected to it. The Tanner
graph for the example case when

1101 00
01 1010

i = 100 0 1 1 M
001 101

is shown in Fig. 1.

As mentioned earlier, for CSS codes, X-type and Z-type
errors are handled separately. In the remainder of this paper,
we will deal with only X-type errors, Z-type errors can be
handled analogously. Thus we will lose the subscript and
use the notation s for sx, H for Hy; and F for Ex, so that
s=HET.

Consider a quantum channel which generates X-type
errors with probability p. A syndrome extraction circuit is
used to obtain the syndrome s = HET. In this paper, we
make the simplifying assumption that the extracted syndrome
is error-free. BP tries to find an error estimate £ such that
HET = s. There can be two possible outcomes:

1) Decoding is considered successful if the actual error £
and the estimated error E differ by a stabilizer i.e., the
Pauli operator corresponding to (E + E) belongs to the
stabilizer group S.

2) The decoding is unsuccessful if either (a) BP fails to
converge to an error estimate E which yields syndrome
s despite having run for a predetermined maximum
number of iterations or, (b) the Pauli operator corre-
sponding to (E + E) belongs to N (S) \ S, in which
case it is a logical error (an incorrectable error).

The messages exchanged between check and variable
nodes in the BP algorithm are in the form of log-likelihood
ratios (LLRs). As mentioned above, consider a channel
where X-type errors occur with probability p. Then the
channel LLRs for each variable node v € V' are given by
1-p

P
For the erasure channel, as explained before, an erased qubit
is replaced with a maximally mixed state, which corresponds

Ay =1In

to the value p = % Thus, the channel LLR value correspond-

ing to erased variable nodes is 0. For unerased variable nodes,
the channel LLR value is co as the corresponding value of
pis 0.

At the O™ iteration ¢ = 0 of BP, each variable node v € V
passes the message m(,o_)m to each check node ¢ € N (v),
where

v = Ao

v—C

At the t iteration, ¢ > 1, each check node ¢ passes the
message ug_)w to each variable node v € N (c), where

t—1)
H V1(J’—>c
2

tanh(
v’ eN(e)\{v}
(2

Recall that s.., ¢ € C, is the ¢ bit of the syndrome vector s.
Subsequently, each variable node v passes the message uézc
to each check node ¢ € NV (v), where

>oooul, 3
c'eN(v)\{c}

) = (—1)% 2 tanh™*

HeZso

V1()12>c =)‘U +

Thus, apart from the 0™ iteration, each iteration of BP has
two rounds of message passing. In the first round, messages
are passed from check nodes to variable nodes according
to (2), and in the second round, messages are passed from
variable nodes to check nodes according to (3). After running
BP for T iterations, the final message at variable node v is
computed as

Uy = Ay + Z ,uglv.
c'eN(v)

To get the error estimate E, we take hard decisions on the

variable nodes as
B,="
1,

The computational complexity of BP is O(nT), where a
natural choice for T is O(logn) [33]. The commutativity
constraint on stabilizers for a stabilizer code, along with
inherent degeneracy of QLDPC codes results in many short
cycles in the associated Tanner graph. This hampers the
convergence of BP [34], [35] and motivates the study of
techniques that help BP converge.

v, >0,
v, < 0.

E. The BP-GD Algorithm

The belief propagation with guided decimation algorithm
was proposed in [18] to assist BP converge in the presence
of qubit errors. Later, the authors modified this technique to
handle qubit erasures in [19]. For the erasure case, if BP fails
to converge, the soft information provided by BP is used by
BP-GD to determine the most reliable variable node. Then,
based on the sign of this soft information a hard value is
assigned to this variable node. Following this update, BP
continues to run. This procedure of decimation followed by

BP continues until either a syndrome match occurs, or there
are no more variable nodes left to decimate.

In simulations, decimations are realized by appropriately
updating the channel LLR of the variable node being dec-
imated. In [19], the channel LLR for an unerased variable
node v is chosen to be a fixed finite value A\, = llry,. = 25,
instead of co. For an erased variable node v, the channel LLR
is set to a small number \, = lr,;, ~ 0. If variable node
v is decimated to bit 0, then its channel LLR is updated to
Ay = +Hlrnay, and if it is decimated to bit 1, then its channel
LLR is updated to A, = —llryax.

III. BELIEF PROPAGATION WITH DEGREE-BASED
DECIMATION

In this section we will describe the BP-DD algorithm.
We will first provide an overview of the algorithm and later
describe it in greater detail along with the pseudo-code.

As described earlier, with channel LLRs initialized as 0
and oo for erased and unerased variable nodes, respectively,
performing BP is equivalent to performing peeling decoding.
For numerical stability of Algorithm 1 in simulations, we
use the value llr,,x = 25 instead of oo (as in [19]) and
Wy, = 107° instead of 0. By doing so, after we run
BP for T iterations, each variable node v accumulates soft
information whose absolute value gives the reliability T',
associated with it. Thresholding this reliability with respect
to a predetermined threshold T' yields a soft version of
peeling, since for I close to 25, if ', > T, it is reasonable to
think that the variable node v is reliable and has been peeled.
We will refer to such variable nodes as reliable variable
nodes. Similarly, variable nodes whose associated reliabilities
are lesser than or equal to I" will be referred to as unreliable
variable nodes. The set Vi; in Line 15 of Algorithm 1 is the
set of unreliable variable nodes.

In the BP-DD algorithm, we first run BP for T’ iterations
to get an error estimate E and compute the corresponding
syndrome §. If this syndrome matches the original syndrome
s, the decoder outputs E as the error estimate. If, however,
§ # s, we perform the decimation step, as described next.

We search for a check node c¢* having the minimum
number of unreliable variable nodes in its neighborhood
(note that the choice of ¢* may not be unique). We denote
this minimum number by au,i, (note that auy,i, is the least
degree of a check node in the sub-graph induced by the
variable nodes in V). We then randomly choose one of
the unreliable variable nodes in the neighborhood of c¢* for
decimation. The value that is assigned to this variable node
is chosen to be 0 or 1 with probability 3. In other words,
we update the initial channel LLR for this variable node to
either +l1lry,ax or —llry, . With probability %

We consider the following cases. In the first case, we
have amin = 2, and peeling (via BP) continues after
decimation. We continue running BP for 7T iterations and
perform the syndrome check with the new error estimate.
If syndrome match does not occur, we again go to the

decimation step. In the second case, we have apin > 2,
and further peeling is not possible even after decimation. In
this case, we decimate a variable node connected to ¢* and
let the iterative decoding continue. In rare scenarios, due to
the choice of the threshold I', we may encounter a third case
where o, = 1. In this case, the single unreliable variable
node in N'(c*) gets decimated and the algorithm continues.
The iterative decoding procedure continues until either the
syndrome match happens or all the unreliable variable nodes
have undergone decimation.

We emphasize here that the choice of the variable node for
decimation is made to potentially enable peeling (via BP) to
be continued whenever possible, which, as mentioned before,
is different from the choice adopted in [19], where the most
reliable variable node is chosen for decimation.

Algorithm 1 Belief Propagation with Degree-Based Deci-
mation (BP-DD)

Input: Set Vg of erased variable nodes, syndrome s, Tanner
graph T(H) = (V,C,), Set Sc of check nodes connected
to at least one erased variable node

Output: Estimated E or non-convergence

1: for veV do

2 if v € Vg then

3 Ay = lrmin

4 else

5 Av = lrpax

6 end if

7. /59, A, for all ¢ € N'(v)

8: end for

9: while |Vz| > 0 do

10: perform BP for T iterations

11: E « hard values of all variable nodes
122 if HET = s then

13: return £

14: else

15: Set Vy =V \{v|T, >T}

16: find ¢* = argminges. [N(c) N Vy| > ¢* may

not be unique

17: Qmin = |N(C*) n VU|

18: if anin = 2 then

19: Sc <—Sc\{c*}
20: end if
21: pick v* € N'(¢*) NV uniformly at random
22: pick w € {0,1} uniformly at random
23: A — (=1)% lrpax
24: Ve + Vg \ {’U*}
25: end if

26: end while
27: return non-convergence

The pseudo-code for the BP-DD algorithm is provided in
Algorithm 1. As mentioned before, for numerical stability
we set the value of 1, to be 25 and that of llr,;, to be

10°

—&—BP-DD
—®—BP-GD
BP

Failure Rate

0.2 0.22 0.24 0.26 0.28 0.3
Erasure Rate

Fig. 2: Performance comparison between BP-DD, BP-GD and vanilla BP
for the [[2025, 81]] HGP code.

(]
10" [—e—gp-0D
—e—BPGD
BP

Failure rate

0.2 025 0.3 0.35
Erasure Rate

Fig. 3: Performance comparison between BP-DD, BP-GD and vanilla BP
for the [[882,24,18 < d < 24]] B1 LP code.

1075. Further, as in [18], [19], we limit the values of the
messages passed from variable to check nodes as

25, if v > 25,
v, = v if v, e [-25,25],
—25, if v < —25.

In Line 16 of Algorithm 1, we find a check node from the
set S¢, having the minimum number of unreliable variable
nodes in its neighborhood, where S¢ is the set of check
nodes having at least one erased variable node in their
neighborhood. As mentioned earlier, this choice may not
be unique. In our simulations we sequentially go over each
check node and count the number of unreliable variable
nodes in its neighborhood, and then choose c* to be the
first check node that we encountered having the minimum
count.

IV. SIMULATION RESULTS

Figure 2 and Figure 3 show the performance comparison
between the BP-DD, BP-GD and vanilla BP schemes for
various erasure rates for the [[2025,81]] HGP code and
the [[882,24,18 < d < 24]] Bl LP code, respectively.

The [[2025,81]] HGP code was obtained from the GitHub
repository in [16] and the Bl code from Appendix B in
[10]. In Fig. 2 and Fig. 3, we plot the failure rate on the
Y-axis, which includes failures due to both logical errors
and non-convergence (i.e., syndrome mismatch). The value
of the threshold I' used to obtain these plots is I' = 20.

We now discuss the computational complexity of the BP-
DD algorithm. The number of decimation rounds is at most
|VE|, which is O(n). As mentioned before, the complexity of
running BP for T iterations is O(nT'). Thus, the worst-case
complexity of BP-DD is O(n?T'). This is the same as that for
BP-GD [18]. However, in our simulations we observed that
the number of decimation rounds required when BP failed to
converge was very small (1 or 2 rounds) in most cases. Thus,
in the typical case the complexity of the BP-DD algorithm
is much smaller than O(n?T).

We remark here that the plot we generated for BP-GD
in Fig. 2 is consistent with the corresponding plot in [19],
however, the BP-GD plot for the B1 code in Fig. 3 slightly
deviates from that in [19]. This could possibly be attributed
to the simulation settings. For example, in our simulations
we run BP for 7" = logn iterations, where n is the length
of the code. However, changing T can result in variation
in performance. Nonetheless, even when compared with the
plots in [19] BP-DD has better performance.

V. CONCLUSION AND FUTURE WORK

We presented a decimation-based BP algorithm, which we
called the BP-DD algorithm, for erasure decoding of QLDPC
codes. The BP-DD algorithm intelligently chooses a check
node based on its degree and subsequently decimates one
of its neighboring variable nodes. We simulated the BP-
DD algorithm for two families of QLDPC codes, namely,
hypergraph product codes and lifted product codes, and
showed improved logical error performance over the BP-GD
algorithm known in prior literature. Further, the complexity
of the BP-DD algorithm is similar to that of the BP-GD
algorithm. Also, unlike some techniques known in the liter-
ature that are applicable only to specific families of QLDPC
codes, the BP-DD algorithm provides good performance for
general QLDPC codes.

As mentioned in [19], modifications of the BP-GD algo-
rithm such as adjusting the channel LLRs of each variable
node by multiplying them with a suitable constant, or taking
a weighed sum of the present and the previous estimate
at a variable node (damping), or a combination of both
adjusting and damping, result in improved performance of
the BP-GD algorithm. However, the optimal values of the
parameters for adjusting and damping are specific to the
choice of the QLDPC code as well as the erasure rate, and
determining them requires extensive simulations. The effect
of incorporating such modifications to the proposed BP-DD
algorithm is left for future work. Comparison between BP-
DD and its suitable modifications with the gradient-descent-
based approaches in [20] is also considered for future work.

(1]

(2]

(3]

[4]

(51

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

M. B. Hastings, J. Haah, and R. O’Donnell, “Fiber bundle codes:
breaking the n 1/2 polylog (n) barrier for quantum LDPC codes,” in
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, 2021, pp. 1276-1288.

N. P. Breuckmann and J. N. Eberhardt, “Balanced product quantum
codes,” IEEE Transactions on Information Theory, vol. 67, no. 10, pp.
6653-6674, 2021.

P. Panteleev and G. Kalachev, “Quantum LDPC codes with almost
linear minimum distance,” IEEE Transactions on Information Theory,
vol. 68, no. 1, pp. 213-229, 2021.

——, “Asymptotically good quantum and locally testable classical
LDPC codes,” in Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, 2022, pp. 375-388.

A. Leverrier and G. Zémor, “Quantum tanner codes,” in 2022 IEEE
63rd Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 2022, pp. 872-883.

——, “Decoding quantum tanner codes,” IEEE Transactions on Infor-
mation Theory, vol. 69, no. 8, pp. 5100-5115, 2023.

I. Dinur, M.-H. Hsieh, T.-C. Lin, and T. Vidick, “Good quantum LDPC
codes with linear time decoders,” in Proceedings of the 55th annual
ACM symposium on theory of computing, 2023, pp. 905-918.

S. Gu, C. A. Pattison, and E. Tang, “An efficient decoder for a linear
distance quantum LDPC code,” in Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, 2023, pp. 919-932.

J.-P. Tillich and G. Zémor, “Quantum LDPC codes with positive
rate and minimum distance proportional to the square root of the
blocklength,” IEEE Transactions on Information Theory, vol. 60, no. 2,
pp. 1193-1202, 2013.

P. Panteleev and G. Kalacheyv, “Degenerate quantum LDPC codes with
good finite length performance,” Quantum, vol. 5, p. 585, 2021.

Y. Wu, S. Kolkowitz, S. Puri, and J. D. Thompson, “Erasure conversion
for fault-tolerant quantum computing in alkaline earth Rydberg atom
arrays,” Nature communications, vol. 13, no. 1, p. 4657, 2022.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient
quantum computation with linear optics,” nature, vol. 409, no. 6816,
pp. 46-52, 2001.

S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson,
M. Gimeno-Segovia, E. Johnston, K. Kieling, N. Nickerson, M. Pant
et al., “Fusion-based quantum computation,” Nature Communications,
vol. 14, no. 1, p. 912, 2023.

M. Kang, W. C. Campbell, and K. R. Brown, “Quantum error correc-
tion with metastable states of trapped ions using erasure conversion,”
PRX Quantum, vol. 4, no. 2, p. 020358, 2023.

A. Kubica, A. Haim, Y. Vaknin, H. Levine, F. Branddo, and A. Ret-
zker, “Erasure qubits: Overcoming the T_1 limit in superconducting
circuits,” Physical Review X, vol. 13, no. 4, p. 041022, 2023.

N. Connolly, V. Londe, A. Leverrier, and N. Delfosse, “Fast erasure
decoder for hypergraph product codes,” Quantum, vol. 8, p. 1450,
2024.

B. Freire, N. Delfosse, and A. Leverrier, “Optimizing hypergraph prod-
uct codes with random walks, simulated annealing and reinforcement
learning (2025),” arXiv preprint arXiv:2501.09622.

H. Yao, W. A. Laban, C. Higer, A. G. i Amat, and H. D. Pfister,
“Belief propagation decoding of quantum LDPC codes with guided
decimation,” in 2024 IEEE International Symposium on Information
Theory (ISIT). 1EEE, 2024, pp. 2478-2483.

M. Gokduman, H. Yao, and H. D. Pfister, “Erasure decoding for
quantum LDPC codes via belief propagation with guided decimation,”
in 2024 60th Annual Allerton Conference on Communication, Control,
and Computing. 1EEE, 2024, pp. 1-8.

K.-Y. Kuo and Y. Ouyang, “Degenerate quantum erasure decoding,”
arXiv preprint arXiv:2411.13509, 2024.

S. Lee, M. Mhalla, and V. Savin, “Trimming decoding of color
codes over the quantum erasure channel,” in 2020 IEEE International
Symposium on Information Theory (ISIT). 1EEE, 2020, pp. 1886—
1890.

H. M. Solanki and P. K. Sarvepalli, “Correcting erasures with topo-
logical subsystem color codes,” in 2020 IEEE Information Theory
Workshop (ITW). 1EEE, 2021, pp. 1-5.

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]

[31]

[32]
[33]
[34]

[35]

——, “Decoding topological subsystem color codes over the erasure
channel using gauge fixing,” IEEE Transactions on Communications,
vol. 71, no. 7, pp. 4181-4192, 2023.

N. Delfosse and G. Zémor, “Linear-time maximum likelihood decod-
ing of surface codes over the quantum erasure channel,” Physical
Review Research, vol. 2, no. 3, p. 033042, 2020.

N. Delfosse and N. H. Nickerson, “Almost-linear time decoding
algorithm for topological codes,” Quantum, vol. 5, p. 595, 2021.

N. Delfosse, V. Londe, and M. E. Beverland, “Toward a union-find
decoder for quantum LDPC codes,” IEEE Transactions on Information
Theory, vol. 68, no. 5, pp. 3187-3199, 2022.

D. Gottesman, Stabilizer codes and quantum error correction.
fornia Institute of Technology, 1997.

A. R. Calderbank and P. W. Shor, “Good quantum error-correcting
codes exist,” Physical Review A, vol. 54, no. 2, p. 1098, 1996.

A. M. Steane, “Error correcting codes in quantum theory,” Physical
Review Letters, vol. 77, no. 5, p. 793, 1996.

R. Gallager, “Low-density parity-check codes,” IRE Transactions on
Information Theory, vol. 8, no. 1, pp. 21-28, 1962.

F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498-519, 2001.

T. Richardson and R. Urbanke, “Modern Coding Theory, 2005,”
available at lthcwww. epfl. ch/mct.

A. Dembo and A. Montanari, “Ising models on locally tree-like
graphs,” 2010.

D. Poulin and Y. Chung, “On the iterative decoding of sparse quantum
codes,” arXiv preprint arXiv:0801.1241, 2008.

Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “Fifteen
years of quantum LDPC coding and improved decoding strategies,”
iEEE Access, vol. 3, pp. 2492-2519, 2015.

Cali-

	Introduction
	Preliminaries
	Stabilizer Formalism
	Quantum LDPC Codes
	Quantum Erasure Channel
	Syndrome Decoding over the Quantum Erasure Channel
	The BP-GD Algorithm

	Belief Propagation with Degree-Based Decimation
	Simulation Results
	Conclusion and Future Work
	References

