
Low Complexity Cache-Aided Communication Schemes for
Distributed Data Storage and Distributed Computing

Abhinav Vaishya

Master of Science
in

Computer Science and Engineering
by Research

Advisor: Dr. Prasad Krishnan
Signal Processing and Communication Research Center (SPCRC),

International Institute of Information Technology, Hyderabad

1 / 70

Outline

1. Introduction

2. Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage

3. A New Low Complexity Distributed Computing Scheme via Subspace Designs

4. Conclusions and Future Work

2 / 70

Introduction

Distributed Data Analytics Engines

Distributed analytics engines comprise of
Distributed File System to provide access to the distributed database across several
nodes
Distributed Computing platform to enable parallel processing of data in the
distributed database.

3 / 70

Introduction

Distributed Data Storage System

Types:
Replication-based: Each chunk of data replicated at r nodes
Erasure Coded: Data encoded using a code and stored across the nodes

Redundancies ⇒ Improved fault tolerances and reduced risk of data loss.

4 / 70

Introduction

Data Rebalancing in Distributed Data Storage System

Technique to overcome the issue of data skew, i.e., non-uniform distribution of data.
Involves transfer of high volumes of data (communication load) between the nodes.
Coded Data Rebalancing: make use of coding opportunities to bring down the
communication load.

5 / 70

Introduction

Distributed Computing Framework

Software framework used to process the data stored in a distributed file system in
parallel.

6 / 70

Introduction

Data Shuffling in Distributed Computing Framework

MapReduce framework
Three phases of computation: Map, Shuffle, Reduce.

Map Phase
Generate intermediate
values (IVAs) using the
present data.

Shuffle Phase
Exchange of IVAs to
fulfill the requirements.
Involves movement of
high volumes of data
(communication load).
Coded Distributed
Computing: make use
of coding opportunities
to bring down the
communication load.

Reduce Phase
Required outputs are
produced.

7 / 70

Introduction

Data Shuffling in Distributed Computing Framework

MapReduce framework
Three phases of computation: Map, Shuffle, Reduce.

Map Phase
Generate intermediate
values (IVAs) using the
present data.

Shuffle Phase
Exchange of IVAs to
fulfill the requirements.
Involves movement of
high volumes of data
(communication load).
Coded Distributed
Computing: make use
of coding opportunities
to bring down the
communication load.

Reduce Phase
Required outputs are
produced.

7 / 70

Introduction

Data Shuffling in Distributed Computing Framework

MapReduce framework
Three phases of computation: Map, Shuffle, Reduce.

Map Phase
Generate intermediate
values (IVAs) using the
present data.

Shuffle Phase
Exchange of IVAs to
fulfill the requirements.
Involves movement of
high volumes of data
(communication load).
Coded Distributed
Computing: make use
of coding opportunities
to bring down the
communication load.

Reduce Phase
Required outputs are
produced.

7 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Data Skew and Data Rebalancing in Distributed Systems

Table of Contents

1 Introduction

2 Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage
Data Skew and Data Rebalancing in Distributed Systems
Coded Data Rebalancing : Formal System Model
Proposed Rebalancing Schemes for Cyclic Databases

3 A New Low Complexity Distributed Computing Scheme via Subspace Designs

4 Conclusions and Future Work

8 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Data Skew and Data Rebalancing in Distributed Systems

Replication-based Distributed Data Storage Systems

Data replication in the database provides
Fault tolerance
Availability
Reduced latency

9 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Data Skew and Data Rebalancing in Distributed Systems

Data Skew in Distributed Databases

Data Skew
Non-uniform distribution of data across storage nodes

Can arise because of
Node additions or removals
Behaviour of client applications
Behaviour of the file system

Leads to
Load imbalance
Stragglers
Increase in task completion time

Remedy : Data Rebalancing

10 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Data Skew and Data Rebalancing in Distributed Systems

Data Rebalancing

Data Rebalancing
Redistribute data across the available nodes to balance the distribution and maintain
replication factor

Rebalancing may be needed at regular intervals
Communication costs
Reduction in performance during rebalancing.

Coded Data Rebalancing for node-removal and node-addition
Broadcast Coded transmissions reduces rebalancing communication costs and
time-to-rebalance.
Exploit data replication for enabling coding opportunities.
Structural Invariance: Preserve database structure (replication factor) post
rebalancing.

11 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Data Skew and Data Rebalancing in Distributed Systems

Data Rebalancing

Data Rebalancing
Redistribute data across the available nodes to balance the distribution and maintain
replication factor

Rebalancing may be needed at regular intervals
Communication costs
Reduction in performance during rebalancing.

Coded Data Rebalancing for node-removal and node-addition
Broadcast Coded transmissions reduces rebalancing communication costs and
time-to-rebalance.
Exploit data replication for enabling coding opportunities.
Structural Invariance: Preserve database structure (replication factor) post
rebalancing.

11 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Data Skew and Data Rebalancing in Distributed Systems

Example - Rebalancing after node removal

Replication factor r = 3

12 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Data Skew and Data Rebalancing in Distributed Systems

Example

Replication factor drops for B, C , D, after removal of Node 4.

13 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Data Skew and Data Rebalancing in Distributed Systems

Example - Uncoded Rebalancing Scheme

Uncoded rebalancing to restore replication factor

Requires 3 transmissions

14 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Data Skew and Data Rebalancing in Distributed Systems

Example - A Coded Rebalancing Scheme

Coded rebalancing over broadcast to restore replication factor

Requires 2 transmissions

15 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Data Skew and Data Rebalancing in Distributed Systems

Example - Final Database

16 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Table of Contents

1 Introduction

2 Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage
Data Skew and Data Rebalancing in Distributed Systems
Coded Data Rebalancing : Formal System Model
Proposed Rebalancing Schemes for Cyclic Databases

3 A New Low Complexity Distributed Computing Scheme via Subspace Designs

4 Conclusions and Future Work

17 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

System Model: Initial database

Figure: An r-balanced distributed database C(r , [K]), where [K] = {1, . . . , K}.

r : Replication factor
‘Balanced’: each node stores r

K fraction of the data.

18 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Node Removal and Rebalancing

Suppose node K is removed from the system.
Let T be the size of a segment (subfile).

Rebalancing Process
Broadcast coded transmissions between the surviving K − 1 nodes.
Let Xi be the transmission from node i .

Communication Load

Lrem(r) = Number of bits transmitted
Size of a segment =

∑K−1
i=1 |Xi |

T

19 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Previous Results

Main Result, Krishnan et al (2020) [1]
For balanced distributed databases on K nodes with replication factor r ≥ 2, there exists
a rebalancing scheme for node removal

Lrem(r) =
Nr
K

r − 1 , where N is the number of segments of a file

Optimality
Optimal communication load for node removal and node addition scenarios.

Major Issue
File Size NT must be at least exponential in K .

[1] P. Krishnan, V. Lalitha and L. Natarajan, ”Coded Data Rebalancing: Fundamental Limits and
Constructions,” 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles,
CA, USA, 2020, pp. 640-645, doi: 10.1109/ISIT44484.2020.9174482.

20 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Previous Results

Main Result, Krishnan et al (2020) [1]
For balanced distributed databases on K nodes with replication factor r ≥ 2, there exists
a rebalancing scheme for node removal

Lrem(r) =
Nr
K

r − 1 , where N is the number of segments of a file

Optimality
Optimal communication load for node removal and node addition scenarios.

Major Issue
File Size NT must be at least exponential in K .

[1] P. Krishnan, V. Lalitha and L. Natarajan, ”Coded Data Rebalancing: Fundamental Limits and
Constructions,” 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles,
CA, USA, 2020, pp. 640-645, doi: 10.1109/ISIT44484.2020.9174482.

20 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Previous Results

Main Result, Krishnan et al (2020) [1]
For balanced distributed databases on K nodes with replication factor r ≥ 2, there exists
a rebalancing scheme for node removal

Lrem(r) =
Nr
K

r − 1 , where N is the number of segments of a file

Optimality
Optimal communication load for node removal and node addition scenarios.

Major Issue
File Size NT must be at least exponential in K .

[1] P. Krishnan, V. Lalitha and L. Natarajan, ”Coded Data Rebalancing: Fundamental Limits and
Constructions,” 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles,
CA, USA, 2020, pp. 640-645, doi: 10.1109/ISIT44484.2020.9174482.

20 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Cyclic Databases : Family of r -balanced Databases

Overcoming the large file-size requirement

Figure: r -balanced cyclic database on nodes [K]

The file W is divided into K segments, W1, W2, . . . , WK .
Each Wi , i ∈ [K] is stored in r consecutive nodes starting from i in a wrap-around
fashion.

21 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Main Contributions

Cyclic balanced databases
Rebalancing schemes for Cyclic balanced databases

File Size NT

NT = O(K 3)

Communication Load
The communication load for the node removal case is strictly lower than that of the
uncoded scheme.
Optimal load for the node addition case.

22 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Main Contributions

Cyclic balanced databases
Rebalancing schemes for Cyclic balanced databases

File Size NT

NT = O(K 3)

Communication Load
The communication load for the node removal case is strictly lower than that of the
uncoded scheme.
Optimal load for the node addition case.

22 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Main Contributions

Cyclic balanced databases
Rebalancing schemes for Cyclic balanced databases

File Size NT

NT = O(K 3)

Communication Load
The communication load for the node removal case is strictly lower than that of the
uncoded scheme.
Optimal load for the node addition case.

22 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Main Theorem

For an r -balanced cyclic database having K nodes and r ∈ {3, . . . , K − 1}, rebalancing
schemes exist which achieve the following communication load

Lrem(r) = K − r
(K − 1) + min (L1(r), L2(r))

where, L1(r) = (K−r)(2r−1)
(K−1) and L2(r) = 1

2(K−1)

(
K(r − 1) + ⌈ r2−2r

2 ⌉
)

.

23 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Coded Data Rebalancing : Formal System Model

Comparisons with other schemes

3 4 5 6 7 8 9 10 11 12 13 14

Replication factor r

0

2

4

6

8

10

12

14

C
o
m
m
u
n
ic
a
ti
o
n
L
o
a
d

Scheme 1

Scheme 2

Scheme with uncoded transmissions

Optimal rebalancing load from [1]

Figure: K=15, varying r

[1] P. Krishnan, V. Lalitha and L. Natarajan, ”Coded Data Rebalancing: Fundamental Limits and
Constructions,” 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles,
CA, USA, 2020, pp. 640-645, doi: 10.1109/ISIT44484.2020.9174482.

24 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Table of Contents

1 Introduction

2 Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage
Data Skew and Data Rebalancing in Distributed Systems
Coded Data Rebalancing : Formal System Model
Proposed Rebalancing Schemes for Cyclic Databases

3 A New Low Complexity Distributed Computing Scheme via Subspace Designs

4 Conclusions and Future Work

25 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Initial and Final balanced databases

Figure: r -balanced cyclic database on nodes [K]

Figure: Target r-balanced cyclic database on nodes [K − 1]

26 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Example

K = 8, r = 6.
Divide W into 8 segments, indexed by Wi , i ∈ [8].
W1 is stored in nodes {1, 2, . . . , 6}, W2 in nodes {2, 3, . . . , 7}, and so on.
Node 8 which has segments {W3, W4, . . . , W8} is removed.

27 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Intuition for Rebalancing Algorithm

To keep the communication load small,
Move bits as minimally as possible.
Maximize use of coding opportunity (encode many subsegments together in each
transmission).

28 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Overview of Rebalancing Algorithm

Our rebalancing algorithm involves three phases:

Splitting
The segments which were present in the removed node are split into subsegments.

Transmission
Coded (and some uncoded) subsegments are transmitted.

Merging
Decoded subsegments are merged with existing segments.

29 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Overview of Rebalancing Algorithm

Our rebalancing algorithm involves three phases:

Splitting
The segments which were present in the removed node are split into subsegments.

Transmission
Coded (and some uncoded) subsegments are transmitted.

Merging
Decoded subsegments are merged with existing segments.

29 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Overview of Rebalancing Algorithm

Our rebalancing algorithm involves three phases:

Splitting
The segments which were present in the removed node are split into subsegments.

Transmission
Coded (and some uncoded) subsegments are transmitted.

Merging
Decoded subsegments are merged with existing segments.

29 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Splitting: Intuition

Notations

W̃j : j thsegment in the target database
Si : set of nodes containing i thsegment in the initial database
S̃j : set of nodes containing j thsegment in the target database

Intuition

We seek to split Wi into subsegments and merge these into those W̃j : j ∈ [K − 1]
such that |S̃j ∩ Si | is as large as possible.
Making |S̃j ∩ Si | large reduces |S̃j \ Si |, which further reduces the movement of
subsegments during rebalancing.
The subsegment of segment Wi which is to be merged into W̃j , and thus to be
placed in the nodes S̃j \ Si , as W S̃j \Si

i .

30 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Splitting: Intuition

Notations

W̃j : j thsegment in the target database
Si : set of nodes containing i thsegment in the initial database
S̃j : set of nodes containing j thsegment in the target database

Intuition

We seek to split Wi into subsegments and merge these into those W̃j : j ∈ [K − 1]
such that |S̃j ∩ Si | is as large as possible.
Making |S̃j ∩ Si | large reduces |S̃j \ Si |, which further reduces the movement of
subsegments during rebalancing.
The subsegment of segment Wi which is to be merged into W̃j , and thus to be
placed in the nodes S̃j \ Si , as W S̃j \Si

i .

30 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Splitting

Figure: Splitting of the corner segments when K − r is even. Here, p = ⌊ K−r
2 ⌋.

The first subsegment, i.e., the largest subsegment, will be transmitted via coded
transmissions.
Uncoded transmissions for all the other smaller subsegments.

31 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Splitting

Figure: Splitting of the middle segments.

Two subsegments in total.
Coded transmissions for both.

32 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Transmission: Main Idea

XOR-coded Transmissions
Due to cyclicity, groups of nodes separated by K − r indices provide Coding Opportunity
⇒ XOR-based schemes

Uncoded Transmissions
Subsegments which won’t be a part of any XOR-coded transmission will be broadcast
separately to the nodes where they are required.

33 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Transmission: Main Idea

XOR-coded Transmissions
Due to cyclicity, groups of nodes separated by K − r indices provide Coding Opportunity
⇒ XOR-based schemes

Uncoded Transmissions
Subsegments which won’t be a part of any XOR-coded transmission will be broadcast
separately to the nodes where they are required.

33 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Example

K = 8, r = 6
Node 8 has segments {W3, W4, W5, W6, W7, W8}
Splitting:

W3: W {1}
3 (large), W {2}

3 (small)
W4 : W {2}

4 , W {3}
4

W5 : W {3}
5 , W {4}

5
W6 : W {4}

6 , W {5}
6

W7 : W {5}
7 , W {6}

7
W8: W {6}

8 (large), W {7}
8 (small)

Transmission: The superscript {1} in W {1}
3 means that this subsegment will be

transmitted to node 1.
Merging: W {1}

3 will be merged with W̃3 as S̃3 \ S3 = {1}
(S3 = {3, . . . , 8}, S̃3 = {3, . . . , 7, 1}).

34 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Example

35 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Example

36 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Example

37 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Merging and Relabelling

All the subsegments W S̃j \Si
i for all possible i ∈ [K − r + 1, K], will be merged into

W̃j , as |S̃j \ Si | is the minimum set difference possible.
For j ∈ [1, K − r], Wj will also be merged into W̃j .

38 / 70

CDR for Distributed Data Storage Systems with Cyclic Storage Proposed Rebalancing Schemes for Cyclic Databases

Conclusion

Rebalancing algorithm for cyclic databases
Cubic file size requirement
Communication Load strictly lower than the uncoded scheme
Two schemes → two parameter regimes
Similar techniques but one does better than the other in one regime and vice versa

39 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

Table of Contents

1 Introduction

2 Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage

3 A New Low Complexity Distributed Computing Scheme via Subspace Designs
System Model for Coded MapReduce
Binary Matrices and Distributed Computing
Subspace Designs
Proposed Distributed Computing Scheme
Numerical Comparisons

4 Conclusions and Future Work

40 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

System Parameters

K Servers: indexed by the set K.
File: divided into F subfiles, for F ≥ K .
Parameter F : known as the file complexity.
F subfiles: indexed by the set F .
Computation Load r : the average number of nodes that map each subfile.
Denote the set of subfiles assigned to node k (k ∈ K) as Mk ⊆ F .
Goal: Compute Q output functions on a file using K distributed computing nodes
(servers).

41 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

Computing Functions

The Q output functions are denoted as ϕ1, . . . , ϕQ . Each ϕq maps all the input files
to a fixed length binary stream uq = ϕq({∀f ∈ F}).
The map function gq,f , ∀q ∈ [Q], ∀f ∈ F maps the input subfile f ∈ F into Q
length-T intermediate values (IVAs), denoted as {v1,f , . . . , vQ,f }. Each
vq,f ≜ gq,f (f), q ∈ [Q], f ∈ F is an IVA corresponding to the subfile f and the qth

map function.
The reduce function hq, q ∈ [Q] maps the IVAs vq,f : ∀f ∈ F into the output value
uq. Thus, uq = ϕq({∀f ∈ F}) = hq({vq,f : ∀f ∈ F}) = hq({gq,f (f) : ∀f ∈ F}).

42 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

Workflow

Figure: Workflow of a generic MapReduce framework on K servers.

43 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

Workflow

Map Phase
Each server k uses the map functions to compute the IVAs of the subfiles in Mk .
Server k will have {vq,f : ∀q ∈ [Q], ∀f ∈ Mk} after the map phase.

Shuffle Phase
Let Wk denote the indices of the functions to be reduced at server k ∈ K.
Server k requires {vq,f : ∀q ∈ Wk , ∀f ̸∈ Mk}.
Servers send broadcast transmissions in order to fulfill the requirements of all the
servers.

Reduce Phase
Each server k computes hq({vq,f : ∀f ∈ F}) for each q ∈ Wk .
This results in computing the value of the ϕq : ∀q ∈ Wk on the input file.

44 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

Workflow

Map Phase
Each server k uses the map functions to compute the IVAs of the subfiles in Mk .
Server k will have {vq,f : ∀q ∈ [Q], ∀f ∈ Mk} after the map phase.

Shuffle Phase
Let Wk denote the indices of the functions to be reduced at server k ∈ K.
Server k requires {vq,f : ∀q ∈ Wk , ∀f ̸∈ Mk}.
Servers send broadcast transmissions in order to fulfill the requirements of all the
servers.

Reduce Phase
Each server k computes hq({vq,f : ∀f ∈ F}) for each q ∈ Wk .
This results in computing the value of the ϕq : ∀q ∈ Wk on the input file.

44 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

Workflow

Map Phase
Each server k uses the map functions to compute the IVAs of the subfiles in Mk .
Server k will have {vq,f : ∀q ∈ [Q], ∀f ∈ Mk} after the map phase.

Shuffle Phase
Let Wk denote the indices of the functions to be reduced at server k ∈ K.
Server k requires {vq,f : ∀q ∈ Wk , ∀f ̸∈ Mk}.
Servers send broadcast transmissions in order to fulfill the requirements of all the
servers.

Reduce Phase
Each server k computes hq({vq,f : ∀f ∈ F}) for each q ∈ Wk .
This results in computing the value of the ϕq : ∀q ∈ Wk on the input file.

44 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

Communication Load

Communication Load
Let T be the size of each IVA in bits. The communication load, denoted by L,
0 ≤ L ≤ 1, is defined as the (normalized) total number of bits communicated by the K
computing nodes during the Shuffle phase and can be calculated using the following.

L ≜
Total number of bits transmitted in shuffle phase

QFT
.

Relationship with r
As r increases, L decreases and vice versa
Reason: Coding opportunities increase as r increases

45 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

Communication Load

Communication Load
Let T be the size of each IVA in bits. The communication load, denoted by L,
0 ≤ L ≤ 1, is defined as the (normalized) total number of bits communicated by the K
computing nodes during the Shuffle phase and can be calculated using the following.

L ≜
Total number of bits transmitted in shuffle phase

QFT
.

Relationship with r
As r increases, L decreases and vice versa
Reason: Coding opportunities increase as r increases

45 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

Previous Work

Uncoded Scheme
Total IVAs needed across K nodes = QFT .
Available IVAs after Map Phase = rF · Q

K = rQF
K .

Luncoded =
(QFT − rQFT

K)
QFT = 1 − r

K .

Optimal Scheme, Li et al (2018) [2]
Careful mapping of the subfiles at r distinct nodes to enable maximal coding
opportunities.

L∗ = 1
r (1 − r

K).

Advantage: Multiplicative gain equal to r
Drawback: File complexity F required to be exponential in K .

[2] S. Li, M. A. Maddah-Ali, Q. Yu and A. S. Avestimehr, ”A Fundamental Tradeoff Between
Computation and Communication in Distributed Computing,” in IEEE Transactions on
Information Theory, vol. 64, no. 1, pp. 109-128, Jan. 2018, doi: 10.1109/TIT.2017.2756959.

46 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs System Model for Coded MapReduce

Previous Work

Uncoded Scheme
Total IVAs needed across K nodes = QFT .
Available IVAs after Map Phase = rF · Q

K = rQF
K .

Luncoded =
(QFT − rQFT

K)
QFT = 1 − r

K .

Optimal Scheme, Li et al (2018) [2]
Careful mapping of the subfiles at r distinct nodes to enable maximal coding
opportunities.

L∗ = 1
r (1 − r

K).

Advantage: Multiplicative gain equal to r
Drawback: File complexity F required to be exponential in K .

[2] S. Li, M. A. Maddah-Ali, Q. Yu and A. S. Avestimehr, ”A Fundamental Tradeoff Between
Computation and Communication in Distributed Computing,” in IEEE Transactions on
Information Theory, vol. 64, no. 1, pp. 109-128, Jan. 2018, doi: 10.1109/TIT.2017.2756959.

46 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Binary Matrices and Distributed Computing

Table of Contents

1 Introduction

2 Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage

3 A New Low Complexity Distributed Computing Scheme via Subspace Designs
System Model for Coded MapReduce
Binary Matrices and Distributed Computing
Subspace Designs
Proposed Distributed Computing Scheme
Numerical Comparisons

4 Conclusions and Future Work

47 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Binary Matrices and Distributed Computing

Binary Computing Matrix

Binary Computing Matrix, Agrawal et al (2020) [3]

C =

1 F

1 0 . . . 1
...

. . .
...

K 1 . . . 0

.

Server k ∈ K maps subfile f : ∀f ∈ F if C(k, f) = 0 and does not map it if
C(k, f) = 1.
The number of 0s in any column is constant and is equal to r (computation load)

[3] S. Agrawal and P. Krishnan, ”Low Complexity Distributed Computing via Binary Matrices
with Extension to Stragglers,” 2020 IEEE International Symposium on Information Theory
(ISIT), Los Angeles, CA, USA, 2020, pp. 162-167, doi: 10.1109/ISIT44484.2020.9174080.

48 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Binary Matrices and Distributed Computing

Previous Results

Main Result
Consider a computing matrix C of size K × F with a non-overlapping identity submatrix
cover C = {C1, C2, .., CS} where the size of each identity submatrix is g ≥ 2. Then, there
exists a distributed computing scheme with K nodes, attaining computation load r and
communication load L = 2

g

(
1 − r

K

)
, with file complexity F .

Corollary

For any positive integers K and r ∈ [K], there exists a (K ,
(K

r

)
, r)-computing matrix,

from which we get a distributed computing scheme on K nodes with computation load r
and communication load L = 2

r+1

(
1 − r

K

)
, with file complexity F =

(K
r

)
. Further, this

load L < 2L∗(r), where L∗(r) is the optimal rate for a given computation load r .

49 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Binary Matrices and Distributed Computing

Example - Scheme via Binary Matrix

Consider a set system (K, F) given by

K = {1, 2, 3, 4, 5, 6, 7}
F = {127, 145, 136, 467, 256, 357, 234}.

The incidence matrix C for this set system is

C =

127 145 136 467 256 357 234
1 1 1 1 0 0 0 0
2 1 0 0 0 1 0 1
3 0 0 1 0 0 1 1
4 0 1 0 1 0 0 1
5 0 1 0 0 1 1 0
6 0 0 1 1 1 0 0
7 1 0 0 1 0 1 0

.

We can see that the above matrix is a (7, 7, 4)-computing matrix.

50 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Binary Matrices and Distributed Computing

Example

Figure: The identity submatrices (using 7 different shapes), each of size 3, of the above matrix
form an identity submatrix cover, which consists of 7 non-overlapping identity submatrices.

51 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Binary Matrices and Distributed Computing

Example

Consider the identity submatrix denoted as C1, where

C1 =

[145 256 357

1 1 0 0
6 0 1 0
7 0 0 1

]
.

Servers: row indices {1, 6, 7}.
Subfiles: column indices {145, 256, 357}.
C1 corresponds to one round of transmission.
One round of transmission has one coded (by server 1) and one uncoded
transmission (by server 6).

52 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Binary Matrices and Distributed Computing

Example

C1 =

[145 256 357

1 1 0 0
6 0 1 0
7 0 0 1

]
.

Let Q = 14 (i.e., β = 2) and W1 = {1, 8}, W6 = {6, 13}, W7 = {7, 14}.
Missing IVAs at:

Server 1: {v1,145, v8,145}
Server 6: {v6,256, v13,256}
Server 7: {v7,357, v14,357}

Coded transmission sent by server 1: {v7,357 ⊕ v6,256, v14,357 ⊕ v13,256} → decoded at
server 6 and server 7 as required.
Uncoded transmission by server 6: {v1,145, v8,145} → received by server 1.

53 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Binary Matrices and Distributed Computing

Straggler Scenario

Straggler: nodes that are slower than the other nodes.
Full Straggler:

Nodes that are unable to complete any map tasks completely.
Considered as failed nodes.
For K − κ ∈ [0 : g − 2] full stragglers, L(κ) =

2
g

(K
κ

−
r
κ

)
.

Partial Straggler:
Nodes that are slower than the other nodes by some factor.
Not considered as failed nodes.
For K − κ′ ∈ [0 : g − 2] partial stragglers, L(κ′) =

2
g

(
1 −

r
K

)
.

Optimal Scheme, Yan et al (2020) [4]

L∗(κ) =
(

1 − r
K

) min{r,κ−1}∑
i=r+κ−K

1
i

(r
i

)(K−r−1
κ−i−1

)(K−1
κ−1

) , K − κ ≤ r − 1

[4] Q. Yan, M. Wigger, S. Yang and X. Tang, ”A Fundamental Storage-Communication Tradeoff
for Distributed Computing With Straggling Nodes,” in IEEE Transactions on Communications,
vol. 68, no. 12, pp. 7311-7327, Dec. 2020, doi: 10.1109/TCOMM.2020.3020549.

54 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Subspace Designs

Table of Contents

1 Introduction

2 Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage

3 A New Low Complexity Distributed Computing Scheme via Subspace Designs
System Model for Coded MapReduce
Binary Matrices and Distributed Computing
Subspace Designs
Proposed Distributed Computing Scheme
Numerical Comparisons

4 Conclusions and Future Work

55 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Subspace Designs

Combinatorial Designs

Design (X , A)
A design is a pair (X , A) with the following properties:

X is a set of elements called points.
A is a collection (i.e., multiset) of nonempty subsets of X called blocks.

t-designs

For v , k, λ, t ∈ Z+ such that v > k ≥ t. A t-(v , k, λ)-design (or simply t-design) is a
design (X , A) with the following properties:

|X | = v .
Each block contains exactly k points.
Every set of t distinct points is contained in exactly λ blocks.

56 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Subspace Designs

Combinatorial Designs

Design (X , A)
A design is a pair (X , A) with the following properties:

X is a set of elements called points.
A is a collection (i.e., multiset) of nonempty subsets of X called blocks.

t-designs

For v , k, λ, t ∈ Z+ such that v > k ≥ t. A t-(v , k, λ)-design (or simply t-design) is a
design (X , A) with the following properties:

|X | = v .
Each block contains exactly k points.
Every set of t distinct points is contained in exactly λ blocks.

56 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Subspace Designs

Subspace Designs

Subspace Designs

Let V be a vector space over the finite field Fq of dimension v . For v , k, λ, t ∈ Z0+ such
that t ≤ k ≤ v , a pair D = (V, A), where A is a collection of k-dimensional subspaces
(blocks) of V, is called a t-(v , k, λ)q-subspace design on V if each t-dim subspace of V is
contained in exactly λ blocks.

Note: A subspace design is also referred to as a q-analog of an equivalent t-design.

57 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Proposed Distributed Computing Scheme

Table of Contents

1 Introduction

2 Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage

3 A New Low Complexity Distributed Computing Scheme via Subspace Designs
System Model for Coded MapReduce
Binary Matrices and Distributed Computing
Subspace Designs
Proposed Distributed Computing Scheme
Numerical Comparisons

4 Conclusions and Future Work

58 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Proposed Distributed Computing Scheme

Some Definitions

Let (V, A) denote a t-(v , k, 1)q-subspace design.
Let A = {B1, . . . , Bb} be the set of blocks.
T ≜ set of all 1-dim subspaces of V.
H ≜ set of all t-dim subspaces of V.
R ≜ set of all (t − 1)-dim subspaces of V.[

v
k

]
q
≜ the number of subspaces of dimension k in any v dimensional vector space

over Fq, the finite field with q elements.

59 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Proposed Distributed Computing Scheme

Binary Matrix Construction

Binary Matrix C
Rows: indexed by set R
Columns: indexed by {(y , B) : y ∈ T , y ⊂ B, B ∈ A}.

Number of Rows =
[

v
t − 1

]
q
, Number of Columns = b

[
k
1

]
q

=

[
v
t

]
q

[
k
1

]
q[

k
t

]
q

For some D ∈ R, the matrix C = (C(D, (y , B))) is defined by the rule,

C(D, (y , B)) =
{

1, if D
⊕

y ∈ H, D
⊕

y ⊂ B
0, otherwise.

Matrix C is a constant column weight matrix (required for distributed computing).
Claim: Matrix C as defined above leads to a coded distributed computing scheme.

60 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Proposed Distributed Computing Scheme

Proof format

Design a method to pick a submatrix of C .
Show that the submatrix is an identity submatrix as follows:

Square matrix
Row and column weight equal to 1.

Show that the submatrices don’t overlap.
Show that all the 1’s in C are covered ⇒ identity submatrix cover.

61 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Proposed Distributed Computing Scheme

Parameters

Number of servers K =
[

v
t − 1

]
q

File Complexity F =

[
v
t

]
q

[
k
1

]
q[

k
t

]
q

Computation Load r =
[

v
t − 1

]
q

−
[

k − 1
t − 1

]
q

qt−1

Communication Load for non/partial straggler case =
2
[

k − 1
t − 1

]2

q
qt−1[

v
t − 1

]
q

[
v − 1
t − 1

]
q

Communication Load for K − κ full straggler case =
2
[

k − 1
t − 1

]2

q
qt−1

κ

[
v − 1
t − 1

]
q

62 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Numerical Comparisons

Table of Contents

1 Introduction

2 Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage

3 A New Low Complexity Distributed Computing Scheme via Subspace Designs
System Model for Coded MapReduce
Binary Matrices and Distributed Computing
Subspace Designs
Proposed Distributed Computing Scheme
Numerical Comparisons

4 Conclusions and Future Work

63 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Numerical Comparisons

Numerical Comparisons

L for L for L for
t − (v , k, λ)q K F r non/partial K − κ = 1 K − κ = 2

straggler case
2 − (3, 2, 1)2 7 21 5 0.19 0.22 0.27
4 − (5, 4, 1)2 155 465 147 0.00688 0.00693 0.00697
3 − (4, 3, 1)3 130 520 121 0.01065 0.01073 0.01082
4 − (5, 4, 1)3 1210 4840 1183 0.0011157 0.0011166 0.0011175

Table: Numerical comparisons of communication loads of our schemes in non/partial straggler
case and straggler case.

64 / 70

A New Low Complexity Distributed Computing Scheme via Subspace Designs Numerical Comparisons

Numerical Comparisons

Load in Optimal
K r F F in [4] κ this work Load in [4]
13 10 52 286 13 0.115 0.023
13 10 52 286 11 0.136 0.028
130 121 520 2.2 × 1013 130 0.0106 0.00057
130 121 520 2.2 × 1013 128 0.0108 0.00058
1210 1183 4840 1.18 × 1055 1210 0.001115 1.887 × 10−5

1210 1183 4840 1.18 × 1055 1208 0.001117 1.889 × 10−5

Table: Numerical comparisons between the scheme from Yan et al (2020) [4] and subspace
designs based computing schemes presented in this work.

[4] Q. Yan, M. Wigger, S. Yang and X. Tang, ”A Fundamental Storage-Communication Tradeoff
for Distributed Computing With Straggling Nodes,” in IEEE Transactions on Communications,
vol. 68, no. 12, pp. 7311-7327, Dec. 2020, doi: 10.1109/TCOMM.2020.3020549.

65 / 70

Conclusions and Future Work

Table of Contents

1 Introduction

2 Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage

3 A New Low Complexity Distributed Computing Scheme via Subspace Designs

4 Conclusions and Future Work

66 / 70

Conclusions and Future Work

Conclusions and Future work

Conclusions
Coded Data Rebalancing

Framework for Coded Rebalancing for handling data skew in cyclic databases with an
improved file-size requirement.
Communication Load strictly lesser than the uncoded scheme.

Distributed Computing
A low complexity distributed computing scheme via subspace designs.
Marginal increase in the communication load as compared to the optimal scheme.

67 / 70

Conclusions and Future Work

Conclusions and Future Work

Future work
Coded Data Rebalancing

Multiple simultaneous node removals or additions in case of cyclic databases.
Constructing good converse arguments in the cyclic database setting.

Distributed Computing
Primarily useful for the large local storage scenario ⇒ constructing schemes for lower
local storage.
Considering wider classes of subspace designs (i.e., λ > 1).

68 / 70

Conclusions and Future Work

Related Publications

Conferences
Athreya Chandramouli*, Abhinav Vaishya*, Prasad Krishnan. ”Coded data rebalancing
for distributed data storage systems with cyclic storage.” In 2022 IEEE Information
Theory Workshop (ITW), pp. 618-623. IEEE, 2022.

Journals (Under Review)
Shailja Agrawal, K V Sushena Sree, Prasad Krishnan, Abhinav Vaishya, Srikar Kale.
”Cache-Aided Communication Schemes via Combinatorial Designs and their q-analogs.”
arXiv preprint arXiv:2302.03452 (2023). [Submitted to IEEE Journal on Selected Areas
in Information Theory (JSAIT), 2023.]

Preprints
Athreya Chandramouli*, Abhinav Vaishya*, and Prasad Krishnan. ”Coded Data
Rebalancing for Distributed Data Storage Systems with Cyclic Storage.” arXiv preprint
arXiv:2205.06257 (2022).

69 / 70

Conclusions and Future Work

Thank You!

70 / 70

	Introduction
	Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Storage
	Data Skew and Data Rebalancing in Distributed Systems
	Coded Data Rebalancing : Formal System Model
	Proposed Rebalancing Schemes for Cyclic Databases

	A New Low Complexity Distributed Computing Scheme via Subspace Designs
	System Model for Coded MapReduce
	Binary Matrices and Distributed Computing
	Subspace Designs
	Proposed Distributed Computing Scheme
	Numerical Comparisons

	Conclusions and Future Work

